Modeling of post-combustion in an ore reduction furnace for nickel production

Authors

  • Deynier Montero Gongora Centro de Estudios de Energía y Tecnología Avanzada de Moa, Facultad de Metalurgia Electromecánica, Universidad de Moa Dr. Antonio Núñez Jiménez. Holguín. Joven asociado, Academia de Ciencias de Cuba. La Habana. https://orcid.org/0000-0003-0903-6635
  • Rafael Arturo Trujillo Codorniú Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad de Oriente. Santiago de Cuba. https://orcid.org/0000-0001-7449-1939
  • Ángel Oscar Columbié Navarro Departamento de Ingeniería Eléctrica, Facultad de Metalurgia Electromecánica, Universidad de Moa Dr. Antonio Núñez Jiménez. Holguín. https://orcid.org/0000-0003-4068-1472
  • Reineris Montero Laurencio Centro de Estudios de Energía y Tecnología Avanzada de Moa, Facultad de Metalurgia Electromecánica, Universidad de Moa Dr. Antonio Núñez Jiménez. Holguín. https://orcid.org/0000-0003-0898-5011

Keywords:

reduction furnace, post-combustion, neural model, random cross validation, Akaike and Bayesian information criteria

Abstract

Introduction: Multi-hearth furnaces are a key stage in the nickel reduction process. The implementation of the automatic control system in the furnace post-combustion has been affected by the lack of mathematical models of this process.

Objectives: To obtain linear models for different operating points and non-linear models based on artificial neural networks that reflect the dynamic characteristics of the process.

Methods: Carrying out active experiments, with pseudo-random binary sequences modulated in amplitude and frequency and inserted into the automaton that activates the air flow regulating valves and variations in the flow of mineral fed, to obtain linear models. In addition, they were recorded passive experiments of 10 months of operations to obtain neuronal models. It was evaluated the multiple-input-multiple-output neuronal model with different numbers of neurons in the hidden layer and with the use of the random cross-validation method, choosing the best model based on the Akaike and Bayesian information criteria.

Results: The neural model predicts the temperatures of furnace hearths four and six with an error of less than 5°C, and a prediction horizon of one step ahead (120s).

Conclusions: The model contributes to predicting the thermal profile in the heating zone of the furnace, as a basis for the design of control strategies that guarantee better use of energy and the reducing additive fuel, to reduce process losses and pollution environmental.

Downloads

Download data is not yet available.

Published

2024-11-18

How to Cite

Montero Gongora, D., Trujillo Codorniú, R. A., Columbié Navarro, Ángel O., & Montero Laurencio, R. (2024). Modeling of post-combustion in an ore reduction furnace for nickel production. Anales De La Academia De Ciencias De Cuba, 14(4), e1548. Retrieved from https://revistaccuba.sld.cu/index.php/revacc/article/view/1548

Issue

Section

Technical Sciences