Obtention of probiotic additive with Lactobacillus pentosus LB-31 for animal production
Keywords:
bacterium, fermentation, scale-up, broiler chickens, lambsAbstract
Introduction: The culture of Lactobacillus pentosus LB-31 has activity as probiotic and there is no process for obtaining it at a large volume.
Objective: To define the process for obtaining a probiotic with Lactobacillus pentosus LB-31 for animal production.
Methods: It was designed an economical culture medium and there were selected the inoculum characteristics. There were evaluated the operating conditions in laboratory bioreactors and culture stability. Different scale-up criteria were studied, and probiotic activity was assessed in broilers and lambs.
Results: The highest concentrations of LB-31 were obtained in the medium composed of sugar cane molasses, urea, sodium acetate and ammonium citrate. Complete inoculum culture did not affect LB-31 growth. The best growth parameters were achieved by shaking the culture at 50 min-1 every 2 h at 37°C and an initial pH of 6.5 ± 0.2. The bioreactor capacity affected the timing of the LB-31 growth phases, and it was not necessary to control pH and dissolved oxygen. It was found that the probiotic was stable for 14 days at room temperature and 60 days in refrigeration. The constant mixing time criterion was adequate to scale the fermentation to 30 L. Animal studies confirmed that LB-31 produces probiotic activity in broilers, improves voluntary intake of lambs, and reduces blood glucose and phosphorus.
Conclusions: The process of obtaining the probiotic is simple, scalable, economically feasible and maintains its efficacy in animals.
Downloads
References
1. FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canada. 2002. [Consultado 25 oct 2016]. Disponible en: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf
2. FAO (Food and Agriculture Organization of the United Nations). Probiotics in animal nutrition-Production, impact and regulation by Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Editor Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 179. 2016. Rome. Disponible en: http://www.fao.org/3/a-i5933e.pdf
3. García Y, Pérez T, Boucourt R, et al. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science. 2016;108:125-32. Disponible en: http://dx.doi.org/10.1016/j.rvsc.2016.08.009
4. García Y, Pérez T. Obtención de microorganismos con actividad probiótica para animales monogástricos. Anales de la Academia de Ciencias de Cuba. 2015;5(3):1-19. Disponible en: http://www.revistaccuba.cu/index.php/revacc/article/download/225/225
5. Ayala, L, García, Y, Savón LL, et al. Evaluación de la actividad probiótica del Lactobacillus pentosus en indicadores de salud y productivos de cerditos destetados. Revista Computadorizada de Producción Porcina. 2014;21(3):130-3. Disponible en:http://www.iip.co.cu/RCPP/213/213_artLAyala.pdf
6. Rodríguez R, Ontivero Y, García Y, et al. Empleo del tubérculo de boniato (Ipomoea batatas L.) y la cepa Lactobacillus pentosus LB-31 como aditivos a ensilajes mixtos para rumiantes. Livestock Research for Rural Development. 2020;32 (7):117. Disponible en: http://www.lrrd.org/lrrd32/7/rodri32117.html
7. De Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology. 1960;23(1):130-5. Disponible en: https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
8. Di Rienzo JA, Casanoves F, Balzarini MG, et al. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Disponible en: Disponible en: http://www.infostat.com.ar
9. Duncan DE. Multiple range and multiple F. test. Biometrics. 1955;11:1-42.
10. Miller G. Use of dinitrosalicylic acid reagent for determination of reduction sugar. Analytical Chemistry. 1959;31(3):426-8.
11. Zapata, A.M. Efecto de la relación carbono/nitrógeno en la producción de alginatos por azotobacter vinelandii. Tesis presentada para optar al título de Ingeniero Químico. Universidad Nacional de Colombia, sede Medellín, Colombia. 2005.
12. Kramer CY. Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications. Biometrics. 1956;12(3):307-0. Disponible en: https://doi.org/10.2307/3001469
13. Doran PM. Bioprocess engineering principles. 2nd Edition. Academic Press. London: Academic Press. 1995. ISBN: 0122208552
14. Peters MS, Timmerhaus KD. Plant Design & Economics for Chemical Engineers. 4th ed., New York: McGraw-Hill. 1991. ISBN: 978-0-07-049613-2 [Consultado 14 oct 2020]. Disponible en: https://www.amazon.com/Plant-Design-Economics-Chemical-Engineers/dp/B004HOTTK2,
15. Amrane A, Prigent Y. Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling. World Journal of Microbiology and Biotechnology. 1998;14:529-34. Disponible en: https://doi.org/10.1023/A:1008828415639
16. Chiang ML, Chen HC, Chen KN, et al. Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. Asian Australias Journal of Animal Sciences. 2015;28(8):1163-70. Disponible en: http://dx.doi.org/10.5713/ajas.14.0780
17. Montes A, Santacruz A, Sañudo J, et al. Efecto in vitro de Lactobacillus casei subsp rhamnosus sobre el crecimiento de un aislado de Helicobacter pylori. Revista del Centro de Estudios en Salud. 2003;1(4):5-12. Disponible en: https://revistas.udenar.edu.co/index.php/usalud/article/view/302/pdf
18. Ossa JA, Vanegas MC, Badillo AM. Evaluación de la melaza de caña como sustrato para el crecimiento de Lactobacillus plantarum. Revista U.D.C.A Actualidad & Divulgación Científica. 2010;13(1):97-104. Disponible en: http://www.scielo.org.co/pdf/rudca/v13n1/v13n1a11.pdf
19. Aragón-Rojas S, Ruiz-Pardo RY, Hernández-Sánchez H, et al. Optimization of the production and stress resistance of the probiotic Lactobacillus fermentum K73 in a submerged bioreactor using a whey-based culture medium. Journal of Food. 2018;16(1):1064-70. Disponible en: https://doi.org/10.1080/19476337.2018.1527785
20. Wang T, Lu Y, Yan H, et al. Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioprocess and Biosystems Engineering. 2020;43(3):515-28. Disponible en: https://doi.org/10.1007/s00449-019-02246-y
21. Othman M, Ariff AB, Wasoh H, et al. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition. AMB Express. 2017;7:215. Disponible en: https://doi.org/10.1186/s13568-017-0519-6
22. Grattepanche F, Lacroix C. Production of viable probiotic cells. Woodhead Publishing Limited. 2013. ETH Zürich, Switzerland. Disponible en: http://dx.doi.org/10.1533/9780857093547.2.321
23. Tavares AG, Lacerda C, Ribeiro D, et al. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Research International. 2018;111:187-97. Disponible en: https://doi.org/10.1016/j.foodres.2018.04.065
24. dos Santos AL, Veloso H, Rodrigues S, et al. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Science and Technology. 2019;99:371-8. Disponible en: http://dx.doi.org/10.1016/j.lwt.2018.10.007
25. Sosa D, García Y, Dustet JC, et al. 2024. Stability and preservation of the probiotic additive with Lactobacillus pentosus LB-31 for animal production. Cuban Journal of Agricultural Science. 2024;58:1-6. Disponible en: https://cjascience.com/index.php/CJAS/article/view/1155/1716
26. Doran, PM. Bioprocess engineering principles. 2nd Edition. Academic Press. London: Academic Press. 2013. ISBN: 978-0-12-220851-5
27. Brizuela MA. Selección de cepas de bacterias ácido lácticas para la obtención de un preparado con propiedades probióticas y su evaluación en cerdos. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. La Habana, Cuba. 2003.
28. Sosa D, García Y, Dustet JC, et al. Efecto del aditivo probiótico Lactobacillus pentosus LB-31 en pollos de ceba. Revista MVZ Córdoba. 2021;26(1):e2037. Disponible en: https://doi.org/10.21897/rmvz.2037
29. López Y, Arece J, Ojeda F, et al. Uso del probiótico Sorbifauna en el crecimiento de crías ovinas estabuladas. Revista de Pastos y Forrajes. 2014;37(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942014000100008
30. Varas M, Ricarte RA, Chagra EP. Concentraciones de metabolitos sanguíneos en cabras criollas con sistemas extensivos de producción en el SO de La Rioja, Argentina. APPA ALPA Cusco, Perú. 2007. http://www.produccionanimal.com.ar/produccion_caprina/produccion_caprina/102-Varas_Metabolismosanguineo.pdf
31. Rosales C, Chamba-Ochoa H, Chavez R, et al. Niveles de insulina y glucosa como indicadores de eficiencia reproductiva y productiva en vacas posparto. REDVET. 2017;18(3). https://www.redalyc.org/html/636/63651263009/
32. Gutiérrez D, García Y, Sosa D. El efecto de Lactobacillus pentosus LB-31 como aditivo microbiano en la alimentación de corderos. Livestock Research for Rural Development. 2020;32(3). http://www.lrrd.org/lrrd32/3/yanei32043.html
33. Kaneko JJ, Harvey JW, Bruss ML. Clinical chemistry of domestic animals. Sixth Edition. Editorial Academic Press. New York. 2008. 928 p.
34. Aguilar EF. Variaciones en la enzima AST y colesterol en hembras ovinas de 3 sistemas de producción de ganadería tropical. Tesis presentada como requisito parcial para obtener el título de Médico Veterinario Zootecnista. Universidad Veracruzana. Facultad de Medicina Veterinaria y Zootecnia. Veracruz. México. 2012. 26 p.
35. Healy PJ, Falk RH. Values of some biochemical constituents in the serum of clinically normal sheep. Australian Veterinary Journal. 1974;50(7):302-305.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dailyn Sosa Cossio, Yaneisy García Hernández, Julio César Dustet Mendoza, Mauricio Alberto Trujillo Roldán, Areadne Sosa Ceijas, Nereyda Albelo Dorta, Abel Blancas Cabrera, Delfín Gutiérrez González

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The journal Anales de la Academia de Ciencias de Cuba protects copyright, and operates with a Creative Commons License 4.0 (Creative Commons Attribution-NonCommercial License 4.0). By publishing in it, authors allow themselves to copy, reproduce, distribute, publicly communicate their work and generate derivative works, as long as the original author is cited and acknowledged. They do not allow, however, the use of the original work for commercial or lucrative purposes.
The authors authorize the publication of their writings, retaining the authorship rights, and assigning and transferring to the magazine all the rights protected by the intellectual property laws that govern in Cuba, which imply editing to disseminate the work.
Authors may establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with recognition of having been first published in this journal.
To learn more, see https://creativecommons.org
