Avian influenza virus. Early warning risks at the wildlife-livestock-human interface in Cuba
Keywords:
zoonoses, early warning, health hazards, risk reduction, pandemicAbstract
Introduction: From the One Health perspective, the international health context points to a growing need for integrated surveillance systems and the development of early warning systems to mitigate risks before they translate into events.
Objective: To identify, from the One Health perspective, the main risks associated with avian influenza viruses in Cuba as a contribution to the development of an early warning system.
Methods: Several studies were developed: knowledge, practices and attitudes of risk in Cuban hunters; migratory connectivity of the Florida Duck; modeling of avian influenza virus’s transmission at the wildlife-livestock-human interface; stochastic simulation of avian influenza viruses spread in poultry and integrated surveillance demands for avian influenza viruses.
Results: Hunters reported engaging in risky behaviors and Blue-winged Teal (Spatula discors) as the most frequently hunted species. Migration date and age of individuals significantly influenced feather composition according to research based on stable hydrogen isotopes (δ2H) implying a more northern origin as the migratory season progresses. Consejos Populares with the highest spillover risk from domestic species to their caretaker were 15 (0.99%) for anatidae; 45 (2.9%) for other domestic birds and 39 (2.6%) for pigs. The simulation of avian influenza viruses spread in poultry farms revealed as the most influential factors the lack of both biosecurity and movement restriction, although it was inferred that it is possible to contain the spread if control actions are initiated less than three days post-infection.
Conclusion: Added knowledge of avian influenza viruses hazards at the wildlife-livestock-human interface contributed to the design and implementation of an early warning system for risk and integrated surveillance of avian influenza viruses with zoonotic potential.
Downloads
References
1. Food and Agriculture Organization of the United Nations (FAO). Global technical consultation on the strategic framework for early warning of animal health threats [Internet]. FAO. Rome, Italy: FAO; 2024. 72 p. Disponible en: https://openknowledge.fao.org/handle/20.500.14283/cd0466en
2. Food and Agriculture Organization of the United Nations (FAO). Strategic Framework 2022-2031 [Internet]. Rome, Italy; 2021. Disponible en: https://openknowledge.fao.org/server/api/core/bitstreams/29404c26-c71d-4982-a899-77bdb2937eef/content
3. Consejo de Defensa Nacional. Directiva 1/2022 “Para la gestión de la reducción del riesgo de desastre en la República de Cuba” [Internet]. Cuba: Gaceta Oficial No. 130 Ordinaria de 2022; 2022 p. 42. Disponible en: https://www.gacetaoficial.gob.cu/sites/default/files/goc-2022-o130.pdf
4. Arruda B, Vincent Baker AL, Buckley A, Anderson TK, Torchetti M, Bergeson NH, et al. Divergent Pathogenesis and Transmission of Highly Pathogenic Avian Influenza A(H5N1) in Swine. Emerg Infect Dis. 2024;30(4):738-51.
5. Monto AS, Fukuda K. Lessons From Influenza Pandemics of the Last 100 Years. Clin Infect Dis. 17 de agosto de 2019;70(5):951-7.
6. Swayne D. E, Sims L, Brown I, Harder T, Stegeman A, Abolnik C, Delgado M, Awada L, Pavade G TG. Strategic challenges in the global control of High Pathogenicity Avian Influenza [Internet]. Paris; 2023. (90 SG/8). Disponible en: https://www.woah.org/app/uploads/2023/05/a-90sg-8.pdf
7. Stel M, Banach N. Preventing Zoonoses: Testing an Intervention to Change Attitudes and Behaviors toward More Protective Actions. Int J Environ Res Public Health. 27 de octubre de 2023;20(21):6987.
8. Lycett SJ, Pohlmann A, Staubach C, Caliendo V, Woolhouse M, Beer M, et al. Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc Natl Acad Sci. 25 de agosto de 2020;117(34):20814-25.
9. Aguilar S, Manica LT, Acosta M, Castro R, Hernández Z, González A, et al. Spatio-Temporal Patterns of Waterbird Assemblages in Cuba’s South Coast Wetlands: Conservation Implications. Wetlands. 11 de abril de 2020;40(2):407-19.
10. van Toor ML, Avril A, Wu G, Holan SH, Waldenström J. As the duck Flies-Estimating the dispersal of low-pathogenic avian influenza viruses by migrating mallards. Front Ecol Evol. 4 de diciembre de 2018;6(DEC).
11. Meckawy R, Stuckler D, Mehta A, Al-Ahdal T, Doebbeling BN. Effectiveness of early warning systems in the detection of infectious diseases outbreaks: a systematic review. BMC Public Health. 29 de noviembre de 2022;22(1):2216.
12. Iglesias I, Kanankege K, Valencia EJ, Liu CJ, Blanco CE, Lim S, et al. DiFLUsion: A new spatiotemporal early warning system for HPAI. Int J Infect Dis. marzo de 2022;116:S101.
13. Oficina Nacional de Estadística e Información (ONEI). Anuario Estadístico de Cuba 2022. Edición 2023.Capitulo 9. Agricultura, Ganadería, Silvicultura y Pesca. [Internet]. 2023. Disponible en: https://www.onei.gob.cu/sites/default/files/publicaciones/2024-04/09-agropecuario-2022_0.pdf
14. Montano-Valle D d/l Nieves, Percedo MI, Rodríguez SV, Fonseca O, Centelles Y, Ley O, Abreu Y, Delgado B, Capdevila Y, Regis-Santoro K, Quesada T, Peláez M AP. Influenza aviar. Oportunidades de mejora del sistema de vigilancia activa basado en riesgo en Cuba. Rev Salud Anim. 2020;42(3).
15. World Organisation for Animal Health. Notificación Evento 4895. 2023 [citado 3 sep 2024]. Cuba-Influenza de tipo A de alta patogenicidad (Inf. por los virus de la) (aves que no sean de corral, incluyendo las silvestres) (2017-) - Informe de seguimiento 10 [FINAL]. Disponible en: https://wahis.woah.org/#/in-review/4895?fromPage=event-dashboard-url
16. Parker GW. Best practices for after-action review: turning lessons observed into lessons learned for preparedness policy. Rev Sci Tech l’OIE. 1 de agosto de 2020;39(2):579-90.
17. Alahmari AA, Almuzaini Y, Alamri F, Alenzi R, Khan AA. Strengthening global health security through health early warning systems: A literature review and case study. J Infect Public Health. abril de 2024;17:85-95.
18. Cohen EB, Hostetler JA, Hallworth MT, Rushing CS, Sillett TS, Marra PP. Quantifying the strength of migratory connectivity. Methods Ecol Evol. 2018;9(3):513-24.
19. Edwards BPM, Smith AC. bbsBayes: An R Package for Hierarchical Bayesian Analysis of North American Breeding Bird Survey Data. J Open Res Softw. 20 de julio de 2021;9(1):1-17.
20. Campbell CJ, Fitzpatrick MC, Vander Zanden HB, Nelson DM. Advancing interpretation of stable isotope assignment maps: Comparing and summarizing origins of known-provenance migratory bats. Anim Migr. 2020;7(1):27-41.
21. Rodríguez-Ochoa A, Kusack JW, Mugica L, Cruz MA, Alfonso P, Delgado-Hernández B, et al. Migratory connectivity of Blue-winged Teal: risk implications for avian influenza virus introduction to Cuba. Front Bird Sci. 2024;3:1382139.
22. Kent CM, Ramey AM, Ackerman JT, Bahl J, Bevins SN, Bowman AS, et al. Spatiotemporal changes in influenza A virus prevalence among wild waterfowl inhabiting the continental United States throughout the annual cycle. Sci Rep. 29 de julio de 2022;12(1):1-10.
23. Montano Valle D de las N, Berezowski J, Delgado-Hernández B, Hernández AQ, Percedo-Abreu MI, Alfonso P, et al. Modeling transmission of avian influenza viruses at the human-animal-environment interface in Cuba. Front Vet Sci. 2024;11:1426989.
24. Hill SC, Lee YJJ, Song BMM, Kang HMM, Lee EKK, Hanna A, et al. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea. Infect Genet Evol. 1 de agosto de 2015;34:267-77.
25. Humphreys JM, Ramey AM, Douglas DC, Mullinax JM, Soos C, Link P, et al. Waterfowl occurrence and residence time as indicators of H5 and H7 avian influenza in North American Poultry. Sci Rep. 13 de diciembre de 2020;10(1):2592.
26. Stevenson MA, Sanson RL, Stern MW, O’Leary BD, Sujau M, Moles-Benfell N, et al. InterSpread Plus: A spatial and stochastic simulation model of disease in animal populations. Prev Vet Med. 2013;109(1-2):10-24.
27. Delgado-Hernández B, Mugica L, Acosta M, Pérez F, Montano D de las N, Abreu Y, et al. Knowledge, Attitudes, and Risk Perception Toward Avian Influenza Virus Exposure Among Cuban Hunters. Front Public Health. 2021;9:644786.
28. BirdLife International. Sites (Important Bird Areas), Global IBA Criteria [Internet]. 2024 [citado 12 sep 2024]. Disponible en: https://datazone.birdlife.org/site/ibacritglob
29. Dolinski AC, Jankowski MD, Fair JM, Owen JC. The association between SAα2,3Gal occurrence frequency and avian influenza viral load in mallards (Anas platyrhynchos) and blue-winged teals (Spatula discors). BMC Vet Res. 2020;16(1):430.
30. Rohwer FC, Johnson WP, Loos ER. Blue-winged Teal (Spatula discors), version 1.0. En: Billerman SM, editor. Birds of the World [Internet]. Ithaca: Cornell Lab of Ornithology; 2020 [citado 12 Sep 2024]. Disponible en: https://doi.org/10.2173/bow.buwtea.01
31. González-Reiche AS, Morales-Betoulle ME, Alvarez D, Betoulle JL, Müller ML, Sosa SM, et al. Influenza A viruses from wild birds in Guatemala belong to the North American lineage. PLoS One. 2012;7(3):e32873.
32. Ly H. Highly pathogenic avian influenza H5N1 virus infections of dairy cattle and livestock handlers in the United States of America. Virulence. 2024;15(1):2363012.
33. Curran SJ, Griffin EF, Ferreri LM, Kyriakis CS, Howerth EW, Perez DR, et al. Swine influenza A virus isolates containing the pandemic H1N1 origin matrix gene elicit greater disease in the murine model. Microbiol Spectr. 2024;12(3):e0410123.
34. Pineda Medina D, Miranda Cabrera I, de las Nieves Montano Valle D, Delgado Hernandez B, Abreu Jorge Y, Alfonso P. Stochastic simulation of the spread of highly pathogenic avian influenza in Cuba. Rev Salud Anim [Internet]. 2023;45:e15. Disponible en: https://cu-id.com/2248/v45e15
35. Railey AF, Adamson D, Simmons HL, Rushton J. Economics of reducing response time to foreign-animal disease in the United States with point-of-care diagnostic tests. Prev Vet Med. 2024;230:106284.
36. Eloit M. Foreword. Global Burden of Animal Diseases. Rev Sci Tech. 2024;43:9-11.
37. Gaston KJ. Birds and ecosystem services. Curr Biol. 2022;32(20):R1163-6.
38Arinik N, Interdonato R, Roche M, Teisseire M. An Evaluation Framework for Comparing Epidemic Intelligence Systems. IEEE Access. 2023;11:31880-901.
39. Markin A, Ciacci Zanella G, Arendsee ZW, Zhang J, Krueger KM, Gauger PC, et al. Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential. PLoS Pathog. 2023;19(7):e1011476.
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Pastor Alfonso Zamora, Lourdes Mugica Valdez, Beatriz Delgado Hernández, Damarys de las Nieves Montano Valle, Alejandro Rodríguez Ochoa, Dunia Pineda Medina, Martín Acosta Cruz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The journal Anales de la Academia de Ciencias de Cuba protects copyright, and operates with a Creative Commons License 4.0 (Creative Commons Attribution-NonCommercial License 4.0). By publishing in it, authors allow themselves to copy, reproduce, distribute, publicly communicate their work and generate derivative works, as long as the original author is cited and acknowledged. They do not allow, however, the use of the original work for commercial or lucrative purposes.
The authors authorize the publication of their writings, retaining the authorship rights, and assigning and transferring to the magazine all the rights protected by the intellectual property laws that govern in Cuba, which imply editing to disseminate the work.
Authors may establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with recognition of having been first published in this journal.
To learn more, see https://creativecommons.org
