La reducción de datos y el procesamiento en tiempo real aplicados a la detección de intrusos

Autores/as

Palabras clave:

reducción de datos, selección de atributos, selección de instancias, detección de intrusos

Resumen

Introducción: La detección de intrusiones es una tarea crucial para identificar actividades maliciosas en sistemas informáticos. Sin embargo, los conjuntos de datos utilizados para entrenar clasificadores suelen ser voluminosos, lo que puede afectar la eficiencia del proceso. Por lo tanto, es necesario reducir el tamaño de estos conjuntos sin comprometer la eficacia de los clasificadores.

Objetivo: Presentar un algoritmo híbrido que permita reducir eficientemente el conjunto de datos utilizado en la detección de intrusiones, sin afectar de manera significativa la eficacia de los clasificadores.

Métodos: El algoritmo propuesto combina 2 enfoques: selección de atributos y selección de instancias. Se aplica de forma secuencial para lograr una reducción óptima del conjunto de datos sin afectar significativamente la eficacia durante la clasificación.

Resultados: Los resultados obtenidos demuestran que el algoritmo propuesto supera a los algoritmos del estado del arte en términos de eficiencia y eficacia. Además, su aplicación en escenarios de detección de intrusos tiene un impacto significativo, ya que acelera el proceso de detección sin comprometer la calidad de los resultados.

Conclusiones: Se ofrece una solución práctica y efectiva para la detección de intrusiones, especialmente en entornos de procesamiento de datos en tiempo real.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2024-03-21

Cómo citar

Herrera Semenets, V., Hernández-León, R., Pérez García, O. A., & Gago Alonso, A. (2024). La reducción de datos y el procesamiento en tiempo real aplicados a la detección de intrusos. Anales De La Academia De Ciencias De Cuba, 14(1), e1540. Recuperado a partir de https://revistaccuba.sld.cu/index.php/revacc/article/view/1540

Número

Sección

Ciencias Técnicas